
Les quatre cycles de Conway

1. Énoncé

Soient 𝑢0 et 𝑢1 deux entiers naturels non nuls.
On définit par récurrence la suite (𝑢𝑛)𝑛∈ℕ, 𝑛 ⩾ 2 par :

𝑢𝑛 =
⎧

⎨
⎩

𝑢𝑛−1 + 𝑢𝑛−2 si (𝑢𝑛−1 + 𝑢𝑛−2) est premier

𝑢𝑛−1 + 𝑢𝑛−2
𝑑

sinon, où 𝑑 ⩾ 2 est le plus petit diviseur de (𝑢𝑛−1 + 𝑢𝑛−2)

Conjecture. Quelque soit (𝑢0, 𝑢1) ∈ (ℕ∗)2, il existe un rang 𝑀 ∈ ℕ tel que, ou bien la suite est
stationnaire (i.e. ∀𝑘 ⩾ 𝑀, 𝑢𝑘 = 𝑢𝑀) ou bien elle boucle sur :

(a) un cycle de 18 termes contenant 13, 61, 37, 49...

(b) un cycle de 19 termes contenant 17, 43, 30, 73...

(c) un cycle de 56 termes contenant 89, 433, 261, 347...

(d) un cycle de 136 termes contenant 7, 31, 19, 25...

Dans cet exercice, on se propose de programmer cette suite pour tester la conjecture avec quelques
valeurs particulières.

1. Montrer que pour tout premier 𝑝, la suite est stationnaire pour 𝑘 ⩾ 2 avec 𝑢0 = 𝑝2−𝑝 et 𝑢1 = 𝑝

2. Implémenter la suite ainsi :
∙ 𝑢0 et 𝑢1 sont donnés par l’utilisateur au départ (dans le code ou par un input).
∙ une variable N, initialement égale à 100, représente le nombre de termes calculés.
∙ un tableau S sauvegarde tous les termes de 𝑢0 à 𝑢𝑁−1. Ce tableau est affiché à la fin.

3. Programmer la condition d’arrêt suivante. Si pour un 𝑛 ⩾ 3 donné, il existe un rang 0 ⩽ 𝑖 < 𝑛
tels que (𝑢𝑖−1, 𝑢𝑖) = (𝑢𝑛−1, 𝑢𝑛), arrêter la boucle. En effet, si l’on trouve une paire de termes
consécutifs égale à une autre paire, les prochains termes calculés seront identiques : nous nous
situons donc dans une boucle. Passer N à 500.

4. En supposant que l’algorithme s’est terminé avant 500 termes, donner les quatre premiers termes
du cycle et sa longueur.

5. Tester la conjecture sur une dizaine de paires (𝑢0, 𝑢1) ∈ (ℕ∗)2 bien choisies.

Résultat final souhaité à la question 4. pour 𝑢0 = 14 et 𝑢1 = 16 :

Exécution du code

[14, 16, 15, 31, 23, 27, 25, 26, 17, 43, 30, 73, 103, 88, 191, 93, 142, 47, 63, 55, 59,
57, 58, 23, 27]→

Le cycle commence à u_4 par [23, 27, 25, 26] et sa longueur est de 19

Les quatre cycles de Conway 1/3 https://joliesmaths.fr

https://joliesmaths.fr

2. Solutions

1. 𝑢2 =
𝑝2−𝑝+𝑝

𝑝
= 𝑝 ; 𝑢3 =

𝑝+𝑝
2

= 𝑝 ; 𝑢4 =
𝑝+𝑝
2

= 𝑝 et ainsi de suite.

2. Il existe bien entendu plusieurs manières de coder pour répondre aux questions posées. Voici un
exemple.

quatre-cycles-de-Conway.py

1 S = [14, 16] # liste des termes de la suite. Définir les deux premiers
2

3 N = 100 # Nombre max d'itérations
4

5 def diviseurs(n): # Renvoie le tableau des diviseurs de n
6 D = []
7 for k in range(1, int(n+1)):
8 if (n%k==0):
9 D.append(k)
10 return D
11

12 def u(v, w): # v := u_{n-2} et w := u_{n-1}
13 D = diviseurs(v+w)
14 if(len(D)==2): # si (v+w) est premier, il a 2 diviseurs exactement
15 return (v+w)
16 else:
17 return((v+w) // D[1]) # D[1] = 2e indice, plus petit diviseur différent de 1
18

19 for k in range(2, N):
20 S.append(u(S[k-2], S[k-1]))
21

22 print(S)

Exécution du code

[14, 16, 15, 31, 23, 27, 25, 26, 17, 43, 30, 73, 103, 88, 191, 93, 142, 47, 63, 55, 59,
57, 58, 23, 27, 25, 26, 17, 43, 30, 73, 103, 88, 191, 93, 142, 47, 63, 55, 59, 57,
58, 23, 27, 25, 26, 17, 43, 30, 73, 103, 88, 191, 93, 142, 47, 63, 55, 59, 57, 58,
23, 27, 25, 26, 17, 43, 30, 73, 103, 88, 191, 93, 142, 47, 63, 55, 59, 57, 58, 23,
27, 25, 26, 17, 43, 30, 73, 103, 88, 191, 93, 142, 47, 63, 55, 59, 57, 58, 23]

→

→

→

→

3. On ajoute la fonction dans(S) qui parcourt les indices pour trouver éventuellement une paire
égale à celle formée par les deux derniers termes calculés.

quatre-cycles-de-Conway.py

def dans(S): # Fonction qui cherche s'il existe déjà deux termes consécutifs
dedans = False # ayant la même valeur que les deux derniers termes
for i in range(3, len(S)): # on parcourt les indices

if(S[-2:]==S[i-3:i-1]): # S[-2:] donne les deux derniers termes
dedans = True # S[i-3:i-1] est une paire de termes consécutifs

return dedans # Si aucune égalité n'a été trouvée, dedans est resté à False

Les quatre cycles de Conway 2/3 https://joliesmaths.fr

https://joliesmaths.fr

On ajoute une condition d’arrêt dans la boucle. Les dernières lignes de code deviennent :

quatre-cycles-de-Conway.py

for k in range(2,N):
S.append(u(S[k-2], S[k-1]))

if(dans(S)):
break

print(S)

4. L’affichage demandé peut se coder ainsi.

quatre-cycles-de-Conway.py

for i in range(3, len(S)): # on parcourt les indices
if(S[-2:]==S[i-3:i-1]): # S[-2:] donne les deux derniers termes

break

print("\nLe cycle commence par", S[i-3:i+1], "et sa longueur est de", (len(S)-i))

3. D’où vient cette suite ?

John Conway - Aquarelle par
le Chat (Mistral) d’après Wikipedia

John Horton Conway (1937-2020) est un mathématicien bri-
tannique de génie, ayant réalisées des avancées majeures dans
des branches variés des mathématiques : théorie des jeux, des
nœuds, des nombres et même mécanique quantique.

Il est notamment célèbre pour le « Jeu de la Vie », un algo-
rithme aux des règles simples et aux résultats spectaculaires,
qui a ouvert un nouveau champ de recherches : les automates
cellulaires.

La suite présentée est citée dans sa biographie Genius at play1.

Pour des travaux universitaire, voir : Conway’s subprime Fi-
bonacci sequences - Richard K. Guy, Tanya Khovanova, Julian
Salazar - 2012 - arXiv:1207.5099

Vous pouvez tester la suite en ligne à l’adresse
https://joliesmaths.fr/wp-content/uploads/quatre-cycles-de-Conway.html

Pour en savons plus sur Conway, voir les excellentes vidéos suivantes :

• « Deux (deux ?) minutes pour John Conway » sur la chaine d’El JJ pour découvrir un
panorama de ses travaux. https://www.youtube.com/watch?v=9Hpy6MKM-J8

• « Le Jeu de la Vie » sur la chaine de ScienceEtonnante pour une explication spécifique à
celui-ci. https://www.youtube.com/watch?v=S-W0NX97DB0

1. Siobhan Roberts, Genius at play : The curious mind of John Horton Conway, Bloomsbury, 2015 (en anglais)

Les quatre cycles de Conway 3/3 https://joliesmaths.fr

https://joliesmaths.fr/wp-content/uploads/quatre-cycles-de-Conway.html
https://www.youtube.com/watch?v=9Hpy6MKM-J8
https://www.youtube.com/watch?v=S-W0NX97DB0
https://joliesmaths.fr

	Énoncé
	Solutions
	D'où vient cette suite ?

