PROBLEME DU CERCLE DE GAUSS

1.

On se place dans le plan affine euclidien.
Soit r € N* et 6, le cercle centré en (0;0), de rayon r.

Question : quel est le nombre p, de points de Z X Z qui sont
dans et sur le cercle ? Calculer ps.

Enoncé

r|1| 2113 |4]5
pr | 5/13]29 497
2. Stratégies de résolution

Nous allons aborder ce probléme de deux manieéres différentes.

La méthode du mathématicien : trouver une formule explicite en fonction de r puis illustrer

avec Geogebra.

La méthode de I'ingénieur : ne pas chercher de formule explicite mais réaliser un programme

Python qui teste tous les points de [—r,r] X [—r,r]

Cest parti !

3.
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4. Solutions

4.1. La méthode du mathématicien

Soit r € N*. On note & l'ensemble des points de Z X Z qui
sont dans ou sur 6, et on a p, := Card(D)

On note 6, le quart de cercle défini par 6, :=6€n (Rj X R+)

On note @, = D N (N* X N) et on s’intéresse a son cardinal.

On a 9, C ([1,r] x[0,r]) puisquen-dehors de ce dernier
ensemble, la distance de tout point de N* X N sera strictement
supérieure a r.

Soit k € [0, 7]
Pour k = 0, le nombre de points de &, d'ordonnée k = 0 est égal a r (nombre d’entiers entre 1 et r).

Pour k # 1, on note I, le point d’intersection de €, et de la droite d’équation y = k, et d,; la
distance entre le point (0, k) et le point I, ;. D’aprés le théoreme de Pythagore, on a d, = Vr? — k?

Le nombre de points de &, d’'ordonnée k est égal a |d, ;| (nombre d’entiers entre 1 et d, ; avec | - |
désignant la partie entiere).

r

On a alors : Card(9,) = Z l\/ rz — k2J

k=0

Le nombre de points recherchés sur chacun des 3 autres « quarts de plan » est identique a Card(%),
par rotation. En ajoutant le point d’origine (0;0), on a donc :

pr=Card(@)=1+4Z[Vr2—k2J [ ]

k=0

INlustration avec Geogebra :

o Créer un curseur r =5, min =1, max =10, Incrément =1

« Saisir C = Cercle((0,0), r)

(Clic droit) > Grille > (Points)

Entrer p =1 + Somme (4 * floor(sqrt(r*2-k*2)), k, 0, r)

Eventuellement, améliorer la présentation des points avec
G = Séquence(Séquence((j,k), j, -r, r), k, -r, r)

La fenétre « Algebre » affiche p = 81 (i.e. ps = 81)
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4.2. La méthode de I'ingénieur

cercle-gauss.py

1 def p(r):

2 n==20

3 for j in range(-r, r+1):

4 for k in range(-r, r+1):

5 1f(J#*2 + kxx2 <= r**x2):
6 n+=1

7 return n

8

9 print(p(5))

Exécution du code

81

5. Pour aller plus loin...

On considére cette fois r, réel positif (les solutions seraient similaires : la formule pour Card(%)
est identique au changement d’exposant prés pour X et la partie informatique pourrait étre ajustée).

Pour r grand', on a : p, ~ 7r?

On note E(r) = nr? — p, le terme d’erreur.
On sait que E(r) = O(r®)

. . 1 (s s . . . 2
Gauss a conjecture2 que 8 = 5 et réussi a démontrer 9 < 1. En 1903, Voronoi a montré 9 < 3 et en

2017, Bourgain et Watt ont légerement amélioré le résultat avec 9 < g ~ 0,627

Cette conjecture est étroitement liée a ’hypothése de Riemann : une preuve de I'une apporterait
des éclairages sur l'autre.

En dimension supérieure a 3, le probléme devient encore plus compliqué et les bornes sur le terme
d’erreur sont encore moins précises.

Le probléme du cercle de Gauss est sous-jacent a de nombreuses considérations en sciences
appliquées : traitement d’images (flou gaussien, filtres), modélisations physiques (nombre de
particules), cryptographie (réseaux euclidiens), recherche opérationnelle (optimisation logistique,
couverture d’un service), etc.

1. En changeant la derniére ligne de code par print(p(100)/100**2), on obtient une valeur approchée de 7, ce
qui peut d’ailleurs évoquer la méthode de Monte Carlo.

2. https://petruconstantinescu.github.io/Gauss_circle_problem_presentation.pdf
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