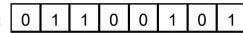
Exercice 1: Combinaisons (coloriages)

1) On dispose de 3 cases. Chaque case peut être coloriée en rouge ou en vert (donc			ĺ
2 couleurs). Réaliser tous les coloriages possibles. Combien y en a-t-il ? <i>(remarque :</i>			
Vordre importe R - V - V n 'est pas V - V - R). Mettre ce nombre sous la forme a^n .			1
2) On dispose maintenant de 2 cases mais de 3 couleurs. Mêmes questions qu'au 1)			
3) Si l'on dispose d'une bande de 10 cases, que l'on peut colorier de 8 couleurs différe	entes,	combi	en de
coloriages sont possibles ? (ne pas les réaliser !)			



- 4) Combien existe-il d'images de 5 × 5 pixels noirs et blancs ?
- 5) Combien existe-il d'images de 6×6 pixels codés sur 256 couleurs. Est-ce plus que le nombre d'atomes dans l'univers ? (10^{80})

Exercice 2: Langage binaire

Les ordinateurs utilisent une base binaire pour compter, c'est-à-dire qu'ils n'utilisent que deux symboles (représentés par 0 et 1). Les premiers nombres sont 0, 1, 10, 11, 100, 101, etc. avec 1=1, $10_2=2$, $11_2=3$, $100_2=4$, etc.

Un octet est la donnée de huit « 0 » ou « 1 », par exemple :

- 1) Combien d'octets différents existe-il?
- 2) Quelle est la valeur de 1000₂ en base 10?

Une autre manière d'écrire en informatique est l'hexadécimal, qui regroupe cette fois 16 symboles : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

- 3) Combien de combinaison existe-il pour deux caractères ? comme par exemple : F 6 1 A
- 4) Pourquoi peut-on dire qu'un octet est la donnée de deux caractères hexadécimaux ?

Exercice 3: Mots de passe

Les mots de passe sont maintenant utilisés dans la vie de tous les jours, notamment pour accéder à du contenu sécurisé (email, compte sur un site, etc.). Nous allons nous intéresser à la sécurité des mots de passe. Répondre en utilisant une écriture scientifique : $a \times 10^n$ avec deux chiffres après la virgule pour a.

- 1) Combien de mots de passe existe-il comportant...
- a) ... 4 caractères minuscules, comme par exemple : « abcd », « pmpw », « allo », « dede » ?
- b) ... 4 caractères majuscules et/ou minuscules, comme « SaLu », « JmPL », « HEHO » ?
- c) ... 5 caractères minuscules?
- 2) Un pirate possède un outil permettant de tester 7100 mots de passe par seconde sur un document protégé par mot de passe.
- a) Combien de temps mettra-il pour tester tous les mots de passe comportant 4 minuscules ? (en secondes)
- b) Pour tester tous ceux à 4 minuscules ou majuscules ? (en minutes)
- 3) Nous allons maintenant écrire des mots de passe pouvant comporter 80 caractères alphanumériques (les 26 minuscules + les 26 majuscules + les 10 chiffres + 18 caractères spéciaux comme @!#)
- a) Combien y a-t-il de mots de passe alphanumériques à 6 caractères (comme « y#KL01 » ou « m@34Tz ») ?
- b) Combien d'années le pirate mettrait-il pour tester toutes les combinaisons ? et la moitié ?

<u>Remarque</u>: en l'état actuel des technologies, 8 caractères semblent être le minimum pour être sécurisé. Cependant, beaucoup de gens utilisent des mots de passe simples comme « azerty12 » ou « iloveyou ». Ces mots de passe peuvent être facilement crackés car proches de mots existants. Un bon mot de passe doit être difficile à deviner, proche de l'aléatoire: « k#mL85@f » ou « ZuP986#! », ou alors être constitués de mots sans rapport: « C@stor24Kirikou » ou « 30TortuesTordues() »